
N87-27240

BUBBLE %_ECTOR IN AUTOMATIC MERGING

P. R, P._2,11DI and T.G. BUTLER

RPK Corporation .__T_r__._._D .-_L.........•_ _="

SUMMARY

This paper shows that it is within the capability of the

DMAF language to build a set of vectors that can grow incremen-

tally to be applied automatically and economically within a DMAP

loop that serve to append sub-matrices that are _enerated within

a loop to a core matrix. The method of constructing such vecto_s

is explained. In an appendix are four DMAP packets for applying

these techniques in different ways.

PURPOSE

The objective i_ to build a set of _a_titionin_ vectors

that will grow incrementally to be applied automatically in a

DMAP loop without analyst inteL-vention f._,_ the purpose of apper,d-

ing the sub-matrices, formed in the loop, to the product marLix

ccumulated fLom p-eceding passes th_'cuJh,...=ic_p; i.e.

[OljT

"[OOlj T

[OOOlj T

,T
[oo OOlj

118

DILEMMA

The DMAP language in NASTRANdoes n_t have a module that
will generate vectors of arbitrary size. No matrix mathematic_l

operations will increase the order of a matrix as demonstrated

here.

_qhen two matrices are added or subtracted, the order of

the result stays the same:

+

Ic -2x2 2x2 (c p)(d _11_._

If two matrices are multiplied, the order of the _esult

will not exceed the b_undina order of the multiplicands:

d_2x: LP _ll:x 2 cm + dp)(cn + dq) _x _

same:

If a matt'ix is squared, the order of the _esult stays the

: + bc)(ab + bd _,"tca + dc)(cb + d'i__.,_

Merging does produce a matrix of expanded order if one has

at hand a partltioninu vector, of the order desired, to monitor

the merainq. This is tantamount to saying that Zou can expand

the order of a matrix if you already have one around which is of

the size that you want. A scheme is therefore needed which em-

ploys a sequence of DMAP utility modules to provide an incre-

mentally expanding partitioning vector. However, no single mod-

ule available in NASTRAN will continually increase the order of

a partitioning vector as desired here. If you let this notion

119

soak in for a time, then the inspiration percolates to the front
of your brain to say "start with something bi_ and extract the

object of required order from it." Our ideas at this point a_e

still a long way away from the final alqorithm, but this is th_

seminal idea. After a number of crude tries, the alqorithm sho_

here finally took shape.

NOTATION

A vector is a column matrix :

]It_n

The transpose of a vector is a _ow matrix:

_v)T: [_l a_ _3 _ j

To save space in the text, vectors will be written as transposes
of row matrices:

al

a 2

a 3

I

[in

L al a2 a3 a% an jT

INITIAL CONSIDERATIONS

The design of the D_iAP ALTER packet will hinge on the

range of certain parameters.

i. The size of the core matrix to which sub-matrices are to be

appended. (Number of startin= columns or rows)

2. The position at which sub-matrices are to be appended; i.e.

Fre or Fost.

3. The size of the final matrix after all sub-matrices have been

appended (Final number of columns or rows).

120

POOR QU.

4. The number of columns orrows in the Sub-matrix generated in

each pass through the DMAP loop (Increment).

SCHEME FOR APPENDING A SUB-MATRIX IN EACH PASS THROUGH A LOOP

The nub of the idea is to operate with a series of vectors

of order larger than that of the matrix to be built in the DMAP

loop. The final MONITOR vector, that will be u_ed for the actual

merge operation, will be extracted from the SOURCE. The tech-

nique" which is used in the intermediate operations for managing

the incremental growth of the MONITOR vector is where the real

interest lies. This will be elaborated in detail, but as an

introduction suffice it to say that there are two SOURCE vectors

which are companions such that one has the increment at the tip

of the vector and the other has the increment at the base of the

vector. A BUBBLE vector is created whose length remains invari-

ant, but whose increment moves inward from its starting position

in a sea of zeroes. The BUBBLE vector leaves a trail of its pre-

vious positions as an accumulation of the increments into a vec-

tor called CLUSTER. The overall lenqth of the CLUSTER vector

remains invariant as the collection of increments increases.

CLUSTER is used to partition the MONITOR from one of the SOURCE

vectors.

[SOURCE} CLUS_T____> [MONITOR}

The steps in managing these vectors follow. For example,

in the case of post-appendinq a single column in each pass, the

SOURCE vector would have leading zeroes and a one in the last

position, so a logical name would be BAS.

T
/0000 0000000 00000000000 0001 |
t J

Use this SOURCE vector as as a replenishable reservoir

from which to take slices of increasing length to form the MONI-

TOR vector as the product matrix grows from successive appending

loops.

121

Several examples of these slices follow:

Lo J
T

Slice taken to create a MONITOR vector to merge a single vector

to the right hand side of a core consisting of a single vector,

resulting in a product matrix of 2 columns.

L 00000001 jT

Slice taken to create a MONITOR vector to merge a single vector

to the right hand side of a 7-col core mat[ix, resulting in a

product matrix of 8 columns.

[000000000000001 jT

Slice taken to create a MONITOR vector to merge a single vector

to the right hand side of a l_-col core matrix, resulting in a

product matrix of 15 columns.

The CLUSTER vectors needed to do the slicing from the

SOURCE would be of the same order as the SOURCE, but would have a

cluster of increments equal to the number of columns in the pro-

duct matrix after the end of a pass; i.e. the three CLUSTER vec-

tors that would be used to slice the three MONITOR vectors _houn

above from the SOURCE would be respectively:

I 000000 0000000 00000000000 0011 _IT

L 000000......... ooooooo........ 00000000000...... llllllll J"

T

[000000 0000000 00000000000 iiiiiiiiiiiiiii J

It is evident from the above three examples that the num-

ber of ones in the CLUSTER vector grows by an increment after

each pass (in this example the increment is one). The needs of

122

OR_;.t4AL PASE 13

,OF POOR QUALrTY

the algorithm will be met by saving only the latest CLUSTER vec-

tor and devising some way of adding another increment in the next

interior position. For example, in building the CLUSTER for the

pass after the product has grown to order eight, one could add a

vector to the "8" CLUSTER vector, which is of the same order as

the "8" CLUSTER vector, but has zeroes everywhere except for a

one in the 9th-from-the-end interior position.

[000000 0000000 00000000 000111iliii IT
J

+ ¢

| oooooo ooooooo ooooooooooo OOLOOOOOOOO |T

:

/ 0oo0o0 ooooooo ooooooooooo 111111111 IT
L J

Well, here is a situation that can be used to evolve pass

by pass. It is a matter of moving the "I" in the intermediate

matrix to the next-interior-position All well and qood. But

how does one do that? In a vulgar analogy, _ust bite off a zero

from the front and spit it onto the end. The tools are already

at hand to do just that. The two companion SOURCE vectors are of

the right order. There is a "i °' on the front of cne of the two

companions to do the biting off of a zero from the front. The

other of the pair has a "i" on the end to do the spitting of a

zero onto the end. This intermediate vector is saved from pass

to pass. Conceptually the "i" keeps travelling to the interior

on successive passes. It is analogous to a bubble moving in a

llquid-filled tube; thus the name BUBBLE vector.

123

Using this scheme, our needs will be met;

i. The MONITOR vector grows by an increment on each pass to do

the merging of an increment to the product. The MONITOR ks dis-

carded after each pass; and is regenerated on a succeeding pass.

2. The CLUSTER vector augments its cluster of "1'3" by an in-

crement on each pass to do its job of slicing off a new :_0NITOR

vector from the SOURCE vector. It is saved An its augmented f DLm

after each pass.

3. The BUBBLE vector shifts its set of ones to the interior by

an increment on each pass to do its job of adding an increment to

the CLUSTER. It is saved after being shifted in each pass.

%. The pair of SOURCE vectors remains unchanged during the whole

operation.

REQUIREMENTS

The analyst is to supply simple initial bulk data and

should be free of having to intervene in making entries in the

DMAP code, once the author has incorporated the BUBBLE scheme

into a DMAP loop. It should be easy for the author to use. It

should be economical on storage space.

ALGORITHM FOR APPENDING

Now to build an algorithm to meet the stipulated require-

ments, we will consider these requirements one by one.

Specification: Simple initial bulk data.

The user supplies 2 SOURCE vectors. Because they are

sparse, it will take a minimum of 2 cards for each vector for a

total minimum of four cards. This is sample. He knows how big

"big" is from the nature of the problem that he is analyzinq. He

knows the size of the sub-matrix to be appended so he can set the

vectors' increments.

124

ORIGINAL PAGE IS

OF POOR QUALJTy

Specification: Easy for the author.

To illustrate the ease of concept, examples of the Ith

step of a loop (I = 4) will be used to demonstrate how simple it

is to shift from pre or post appending or from column or Low

appending. The operations can be characterized as CROP, SHIFT,

SUM, HARVEST, AND APPLY. The first example shows pre-appendinq

of columns and the second example shows post-appending of

columns.

Pre-appendinq

CROP SHIFT

IOt IOl IOl
IOl IOl IOl
IOl Ill Ill

SUM HAR%_ST APPLY

TIFMON [I 0 0 0 0}

fi'l]_(l_ ,I ,

lll_!01 I01

IiI_I0140_
!l!_10!101

+41F_41_ _IF_40FL0)

I01 (o'_1Ol _ :[I0! I1!
IOl Io!10i _ !1 t0t I1!
IOl I011Ol _ I1 I01 Ill

4oF _ob_oF _oF _lF_l_ i0
I01 I01101 I0! IOI!01 _ !0
I01 I01101 I01 I0!!0,_ I0
!01 lOft.O) I0! I01!01 _ !0
',i)+k0) [03

PARTN

Ith Names

IOI IO! IOI IOI ¢o]
!oi !oi Ioi IOliOI
Io! !oi !o! IOI_OF

tO; L.O) tO;+ Lo) kO; tOJ tO) LOJtOJ
MERGE ADD PARTN

(a; [A B C D7
Ibl E F O HI
Icl I J K LI
Idl M N 0 PI
_eF Q R S T!
Ifl u v _I Xl
I_I Y z z y!
!hl x w ",,- ul
t.i) t s r qJ

MERGE

BAS DUMMY TIP BUBLJ tL]_l CLUSJ CLUSJ TIPMON SUBMTX FRODI

BUBLI DUMMY BUBLJ _ TIP = FRODJ

Prep for Loop ._ _ I,
SWITCH to BUBL[CLUSI FRODI

Post-appending

CROP SHIFT SUM

;l_-+fO_£o}
IOI IOI fo_
IOI IOI IOI
IOI IOI IOI
_OF _oF_oF
IOI Ill Ill
I01 I01 I01
I01 I01 I01
k0) t0) k0)
PARTN

Ith Names
TIP DUMMY

BUBLI

Prep for Loop
SWITCH to

IOI IOliOI '> IOI IOI IOI
IOI IOli01-* IOI IOI I01
IOI IOli01 + IOI IOI IOI
_oF I_HIF_ 40F_41_l_ _iF-,_o_,'O;
I0! I01101 + III IOI Ill lll-'lOllOl
I01 I01101-' Iii !01 Ii! III-'IOI_OF
IOI LOJlOl _ Iii I01 Iii III--'I01101
tl)-_CO}tO) -* 'i) k0) kl) tl)_tl) {.i)
MERGE ADD PARTN

HAR%_ST APPLY
BASMON [0 0 0 0

(o_ ;o_ fo',
IOl 1014oi-
IOl !ol IO!
IOl IO! ko)

I]

FA B C D] (a!
!E F G Hl!bl
!I J K Lilc!
IM N O F!Idl
IQ R S T!4e_
IU v w X!lf!
!Y Z z Yll_l
Ix w v ullhl
Lt _ r qJLi;
MERGE

BAS BUBLJ CLUSI CLUSJ CLUSJ BASMON PRODI SUBMTX

DUMMY BUBLJ i BAS : PRODJ

BUBLI CLUSI PRODI

125

Specification: Economical on storage space

The two source vectors will remain in storage for the

whole time that the loop is in operation. Their length may be in

the thousands, but the vectors are stored in packed form so the

storage will consist of the header, the increment of l's, and the

packing index for the position of nonzero entries.

The CLUSTER will be the same length as the SOURCE vectors

and will have a cluster of "l's" instead of a small increment of

l's, but the content will be mostly zeroes in packed form; so its

storage requirements will be low until its cluster grows to the

final size of the PRODUCT matrix at the end of the loop.

The BUBBLE vectcrs will be the same length as the SOURCE

vectors and will have a single non-zero increment like the SOURCE

vectors so their storage will be exactly the same as the SOURCE

vectors.

The MONITOR vectors will exist for the duration of a merge

within a loop. Their brief storage requirements are exactly the

same as the SOURCE vectors, because they will differ from the

source only in the order number in the header.

ALGORITHM FOR POST APPENDING A MATRIX

Organize a pair of SOURCE vectors of large order; one with lead-

ing zeroes before the increment of "l's"; and the other with

trailing zeroes after the increment of "l's" Call these re-

spectively BAS and TIP.

BAS L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _ _]T

i The # of l's is

governed by the sub-matrix order/pass; i.e. increment.

T

TIP ,.| _ 1/_ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 _|

L The # of l's is governed by the increment/pas s •

126

ORIGINAL PAGE IS

OF POOR QUALITY

Find out the order of the core matrix prior to entering

the loop. Use PARAML with operator = TRAILER and RECON0 =

trailer position # 1 corresponding to the number of columns in

the core matrlx. Call the parameter value that is returned by

the name CORCOL for the number of core columns. But, if the sub-

matrix is to be augmented by rows, set RECON0 = trailer position

_2 corresponding to the number of rows; then call the returned

parameter by the name COROW for the number of core rows. The

remainder of the explanation for this algorithm will be based

upon the logic of post appending columns.

PARAML

EQUIV

COREMTX//_TRAILER_/I/CORCOL 3

COREMTX,PRODI/TRUE $

Move the bubble to that CORCOL position in unity incre-

ments with these preparatory steps.

Set up a small loop to prepare the vectors BUBLI and CLUSI

ahead of the main loop. Companion source vectors (SOURCE1) with

increments of unity called BASI and TIP1 are supplied by the user

with DMI cards in the bulk data. Make copies of BASI to act as

starting configurations for CLUSI and BUBLI fo_ molding into

their loop configurations.

COFY

COFY

BASI/CLUSI/0 $ Fo_ the case of post-appen_in_.

BASI/BUBLI/0 $

Set the number of movements of the bubble t_hat are needed

to prepare BUBLI.

PARAM //*SUB*/SHIFT/CORCOL/I $

LABEL

FILE

BUBTOP $

BUBLI= SAVE/ CLUSI = SAVE/ PRODI = SAVE $

Partition off a zero from the starting vector of BUBLI

with TIP1.

127

0
£BUBLI)TIPI)IDUMMY}

PARTN BUBLI, ,TIPI/DUMMY,,,/+7 $

Merge a zero onto the truncated stub of the BUBBLE vector
with BAS 1

{_} :BAS-I-=> {BUBLJ]

MERGE DUMMY, , , , ,BASI/BUBLJ/+7 $

The increment is now moved interior-ward in the BUBBLE vector.

Combine the shifted BUBBLE vector with the starting vector of

CLUSI.

[CLUSI} + £BUBLJ} = £CLUSJ}

ADD CLUSI,BUBLJ/CLUSJ/ $

Reset the internal loop names to the starting assignments in

order to prepare for the next pass.

SWITCH

SWITCH

BUBLJ,BUBLI/ /-i $

CLUSJ,CLUSI/ /-i $

Return to the starting label if the loop count (internally moni-

tored by NASTRAN) is less than the prescribed value of SHIFT.

REPT BUBTOP,SHIFT $

Now the positions of the ones in both BUBLI and CLUSI matches the

size of the CORE matrix.

Set up the loop for post appending an incremental sub-matrix onto

the CORE matrix in each pass.

LABEL CORTOP $

128

Keep shifting the increment (which can now be different from

unity depending on the need of the sub-matrix in the loop) in the

BUBBLE vectorOnce perpass (with BAS and TIP instead of BASI and

TIP1) now that it has been set by the preparatory packet. Start

by truncating an increment of leading zeroes.

[BUBLI}

PARTN BUBLI, ,TIP/DUMMY,,,,'+7 S

Merge on an increment of trailing zeroes to push the bubble into
the interior.

MERGE

Combine the shifted

"CLUS I"

BAS > [BUBLJ}

DUMMY, , , , ,BAS/BUBLJ/+7 $

BUBBLE vector with the CLUSTER vector

£CLUSI} + [BUBLJ} = [CLUSJ}

ADD CLUSI,BUBLJ/CLUSJ/ S

Partition off the MONITOR vector to the size of .the PRODUCT

mat'rlx being built in this pass.

" 0

PARTN BAS, ,CLUSJ/,MNTRI, , /+7 $

The desired merging vector has been produced and is ready to be

applied to the job of joining the current sub-matrix to the cur-

rent PRODUCT matrix.

129

$_MOCK FUNCT'L MODULE "MTXOPN" PRODUCES THE SUB-MATRIX "SUBMTX"

MTXOPN DBIN/SUBMTX/ $

$8 PRODUCT MATRIX "PRODI" IS AVAILABLE FROM A PR_JIOUS PASS.

£PRODI : SUBMTX] ____M/__I> £PRODJ]

MERGE PRODI, ,SUBMTX, ,MNTRI, /PRODJ/ +7 $

Prepare for the next pass by resetting the matrix names to their

initial assignments.

SWITCH

SWITCH

SWITCH

PRODJ,PRODI/ /-i $

CLUSJ,CLUSI/ /-i $

BUBLJ,BUBLI/ /-i $

Apply a test to see how far the merging has proceeded with re-

spect to the requirements of the matrix operations. Set the

value of a threshold to neqative -when the loop is done so that a

conditional jump takes the OSCAR outside the loop.

$$MOCK FUNCT'L MODULE "TESTOPN" PROVIDES A TEST LOGIC FOR LOOPS.

TESTOPN VARY, , /DBOUT/THRESHLD S

COND 0UTSIDE,THRESHLD $

Loop back to the top of the main loop so long as the value of

THRESHLD remains positive. When it turns negative the condi-

tional Jump takes the sequence of operations beyond the loop.

$$

$$

REPT

LABEL

CORTOP,## $ _# VALUE IS LARGER THAN THAT

EXPECTED FOR THRESHOLD

OUTSIDE $ PRODI IS PASSED OUTSIDE THE LOOP WITH

SUB-MATRICES FROM ALL LOOPS MERGED ONTO IT

130

This completes the explanation for the algorithm following

the examl_leoT post-appending any sized sub-matrix by columns.

In the appendix, this algorithm is coded for the four permuta-

tions of:

i. Post-append by columns.

2. Pre-append by columns.

3. Post append by rows.

%. Pre-append by rows.

CONCLUSION

It has been shown that it is within the capability of the

DMAP language to build a set of vectors that can grow incremen-

tally to be applied automatically and economically within a DMAP

loop to serve to append sub-matrices that are generated within a

loop to a product matrix.

131

APPENDIX FOR FOUR PATHS OF THE BUBBLE ALGORITHM

$POST APPEND COLUMNS.

PARAML

COPY

COFY

PARAM

LABEL

FILE

PARTN

MERGE

ADD

SWITCH

SWITCH

REPT

LABEL

PARTN

MERGE

ADD

PARTN

_{I_XOPN

MERGE

SWITCH

swITCH

SWITCH

TSTOFN

COND

REPT

LABEL

C0REMTX/ /*TRAILER*,' 1 /CORCOL S

BASI /CLUSI/ 0 $

BASI /BUBLI/ 0 $

//*SUB*/SHIFT/CORCOL/ 1 $

BUBTOP $

BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE $

BUBLI, , TIP1 /DUMMY, , , /+7 $

DUMMY, , , , ,BASI /BUBLJ/+7 $

CLUSI,BUBLJ/CLUSJ/ $

BUB[,J,BUBLI/ /-i $

CLUSJ,CLUSI/ /-i $

BUBTOP,SHIFT $

C0RTOP $

BUBLI, ,TIP /DUMMY, , , ,'+7 $

DUMMY, BAS /BUBLJ/+7 $

CLUSI,BUBLJ,'CLUSJ,' $

BAS , ,CLUSJ,' ,_TRI, , /+7 $

DBIN/MODE/ $

PRODI, ,MODE, ,MNTRI, /PRODJ/_7 $

FRODJ,PRODI/ /-I $

CLUSJ,CLUSI/ /-i $

BUBLJ,BUBLI/ /-i $

VARY, , /DBOUT/THRESHLD S

0UTSIDE,THRESHLD $

CORTOP,NMBR $

OUTSIDE $

132

SPREAFPENDCOLUMNS.

PARAML
COPY
COPY
PARAM
LABEL
FILE
PARTN
MERGE
ADD
SWITCH
SWITCH
REPT
LABEL
PARTN
MERGE
ADD
PARTN
MTXOPN
MERGE
SWITCH
SWITCH
SWITCH
TSTOPN
COND
REPT
LABEL

COREMTX!/*TRAILER_/I/CORCOL $

TIPI /CLUSI! 0 $

TIPI !BUBLI/ 0 $

!!*SUB*/SHIFT/CORCOL/ 1 $

BUBTOP $

BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE $

BUBLI, , BASI ,'DUMMY, , , ,'+7 $

DUMMY TIFf /BUBLJ,'+? $

CLUSI,BUBLJ/CLUSJ/ S

BUBLJ,BUBLI! /-i $

CLUSJ,CLUSI,' !-i $

BUBTOP,ZHIFT $

CORTOP $

BUBLI, ,BAS /DUMMY, , , ' _

DUMMY TIP /BUBLJ/+7 S

CLUSI,BUBLJ/CLUSJ/ $

TIP , ,CLUSJ/ ,MNTRI, , ,'+7 $

DBIN/MODE/ $

PRODI, ,MODE, ,MNTRI, /FRODJ/+7 $

PRODJ,PRODI/ /-i $

CLUSJ,CLUSI/ /-i $

BUBLJ,BUBLI/ /-i $

VARY, , /DBOUT/THRESHLD $

0UTSIDE,THRESHLD $

CORTOP,NMBR $

OUTSIDE $

133

SPOSTAPPENDROWS.

PARAML
COPY
COPY
PARAM
LABEL
FILE
PARTN
MERGE
ADD
SWITCH
SWITCH
REPT
LABEL
PARTN
MERGE
ADD
PARTN
MTXOPN
MERGE
SWITCH
SWITCH
SWITCH
TSToFN

COND
REFT
LABEL

COREMTXII*TRAILER*/2/COROW $

BASI ICLUSI/ 0 $

BASI IBUBLI/ 0 $

/I_SUB*/SHIFTICOROW/ 1 $

BUBTOF $

BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE $

BUBLI.. TIP1 /DUMMY '+7 S

DUMMY BASI ,'BUBLJ,'+7 $

CLUSI.BUBLJ,'CLUSJ/ $

BUBLJ,BUBLI,' /-i S

CLUSJ.CLUSI,' I-I $

BUBTOP.SHL=T $

CORTOP $

BUBLI..TIP /DUMMY... /_7 $

DUMMY BAS ,'BUBLJ/+7 $

CLUSI.BUBLJ/CLUSJ/ S

BAS , ,CLUSJ/ .MNTRI, . /+7 $

DBIN/MODE/ $

PRODI,MODE M_fRI ,'FRODJ,'+7 $

PRODJ,FRODI/ /-! $

CLUSJ.CLUSI/ /-i $

BUBLJ.BUBLI/ /-i $

VARY. . /DBOUT/THRESHLD $

0UTSIDE,THRESHLD $

CORTOP,NMBR $

OUTSIDE $

134

SPREAPPENDROWS.

PARAML
COPY
COPY
PARAM
LABEL
FILE
PARTN
MERGE
ADD
SWITCH
SWITCH
REPT
LABEL
PARTN
MERGE
ADD
PARTN
MTXOPN
MERGE
SWITCH
SWITCH
SWITCH
TSTOPN
C0ND
REPT
LABEL

COREMTXl I*TRAILER*/2/COROW $

TIP1 ICLUSI/ 0 $

TIP1 IBUBLI! 0 $

//*SUB*/SHIFTICOROWI 1 $

BUBTOP $

BUBLI = SAVE/ CLUSI = SAVE/ PRODI = SAVE $

BUBLI, , BASI /DUMMY '+7 S

DUMMY TIP1 /BUBLJ/+7 $

CLUSI,BUBLJ/CLUSJ/ S

BUBLJ,BUBLI/ /-i $

CLUSJ,CLUSI/ /-i $

BUBTOP,SHIFT $

CORTOP S

BUBLI, ,BAS /DUMMY, , , /+7 $

DUMMY TIP /BUBLJ/+7 $

CLUSI,BUBLJ/CLUSJ/ S

TIP , ,CLUSJ/ ,MNTRI, , /+7 S

DBIN/MODE/ S

PRODI,MODE, , , ,MNTRI ,'PRODJ/+7 $

PRODJ,PRODI,' /-I S

CLUSJ,CLUSI/ l-i $

BUBLJ,BUBLI/ /-i $

VARY, , /DBOUT/THRESHLD $

0UTSIDE,THRESHLD $

CORTOP,NMBR $

OUTSIDE $

135

